This just in: You create your own reality!

When proponents of pseudoscience talk amongst each other, any doubts about the validity of their claims hardly ever arise. When two pseudoscientists have roughly the same beliefs, they will never question one another, and no attempt to verify their claims will be made. It’s assumed, as a given, that what they believe is real and true.

It’s only when pseudoscientists are confronted by skeptics that they try to cobble together actual pet theories of how their claims can be justified. These theories are usually ad hoc (as in, invented right on the spot), just to get the skeptic off the pseudoscientist’s back. There are, however, certain theories that seem to permeate the pseudoscientific community, and are used universally for all brands of quackery.

One of my favorites is the argument that each of us “creates our own reality.” And that’s not in the weak sense of “our life is what we make of it,” with which I completely agree. It’s in the strong sense that physical reality actually bends to our will in real time! This is reminiscent of the philosophy of solipsism, where all of reality is in the mind of the observer. The pseudoscientists, however, dress up the argument in the usual array of loosely-knit scientific terms hijacked from quantum mechanics, such as taking the idea of quantum entanglement to mean that “everything is connected,” among other nonsense.

To the untrained skeptic, this might seem like a powerful argument. And it is, in most cases, a debate-stopper. I mean, if we all create our own reality, then surely we can create whatever physical laws we like! Skeptics create realities of strict, unchanging physics and lead boring and unfulfilled lives, while pseudoscientists create realities where “anything is possible.” Or so the argument goes. This argument, however, is a debate-stopper for the wrong reason: not because it’s so airtight that it checkmates the skeptical opponent, but because it’s so devoid of meaning that no further discussion can logically continue.

Because of this, the “argument” serves as the foundation for the most weasely excuses for why a quack treatment won’t work on skeptics:

  • My treatment won’t work on you because you created a reality that stops it from working!
  • You have to want the treatment to work. You must open your mind to it.
  • Your skeptical presence in the room will stop the treatment from working.
  • The outcome of the test will be whatever you believe it should be. Your presence will skew the results in your favor.

Poverty of the argument

My contention is that the idea that “we create our own reality” is an empty philosophy, a cowardly withdrawal from reason. It’s intellectually lazy, and ultimately useless as a means of understanding our existence. Allow me to illustrate how I arrived at this with a series of observations and rhetorical questions.

  • If we create our own reality, then why don’t we have intimate knowledge of its innermost workings? For instance, why isn’t everyone endowed with instinctual knowledge of physics? And I don’t mean Newtonian physics, or even quantum physics, but the “true” physics that governs all the fundamental forces and encompasses what quantum mechanics and general relativity only approximate? If we are the architects of our world, surely we should know how it works!
  • On a related note, how is it possible that so many discoveries about our world have been totally counterintuitive, like the roundness of the Earth, heliocentricity, or the curvature of spacetime? If we are the ones who create our world, it would stand to reason that our intuition should naturally guide us towards understanding its nature. And yet, from the most profound breakthroughs in our history, we’ve observed the exact opposite.
  • Taking the above points a bit further, how can there be anything in the world that is “unknown” to me? That is, why am I not omniscient with respect to my reality, since it’s all my creation? For example, how can I be surprised when I taste a certain food for the first time? Why am I awed when I walk into a cathedral I’ve never visited before?
  • If I create my own reality, why are there people in the world who are better than me at various activities? For example, if I pick up and start reading Andrew Wiles’s proof of Fermat’s Last Theorem, there’s a good chance that I won’t understand a word of it. But why is that? If Andrew Wiles and his proof are products of my imagination, then why can’t I understand the proof that my imagination created?

    Because you wanted to create a proof that you couldn’t understand.

    No, I didn’t! Being a world-renowned mathematician was one of my earliest dreams. So why hasn’t that reality been realized?

    Because you created a reality wherein you have to learn and grow in order to understand it.

    If this is the case, then the whole argument becomes an easy candidate for Occam’s Razor. Why would I voluntarily limit my understanding of reality, and then spend my life attempting to rediscover this understanding, while never quite approaching the level of understanding I must have had in order to create reality in the first place?

  • If our understanding of reality is deliberately limited, then attempting to expand our understanding of it would ultimately require cautious use of the scientific method, which is precisely what we do in understanding the real world! It should be apparent that this argument eventually achieves a one-to-one correspondence with plain old realism, albeit in a roundabout way that has emotional appeal for those unwilling to face realism head on.
  • Why is the reality we create imperfect? This boils down to the Problem of Evil, which is ever so inconvenient for believers in omnipotent, benevolent gods. When someone uses the argument that “you create your own reality”, they’re essentially transferring the burden of the problem from God to “you,” since you now become the god of your reality.

    So then why do I, as a god, create a reality that is not perfect? At what point did I decide to create a reality where I’m a common citizen who has to work for a living and deal with the everyday problems of middle-class life? When did I decide to give HIV to a quarter of the population in Africa? And when did I decide to create a vast number of people who delude themselves with imaginary realities and magical thinking, and kill each other over whose beliefs are holier? None of the above creations are things that I ever wanted. And yet they exist.

  • If we create our own reality, then why is reality so difficult to alter? Specifically, why doesn’t reality automatically bend to our will, like the pseudoscientists say it should? If the state of reality is guided by our deepest desires, why doesn’t reality rebuild itself according to what we want at any given time? It seems like the only way to make actual changes to our reality is by doing physical work, or paying someone to do it for us. It almost seems like we have no cognitive control over external elements in our reality!
  • I could go on, but the conclusion will remain the same. No matter how we approach this argument, like any other pseudoscience, it will eventually reduce to absurdity. So, please, next time you hear this nugget of pseudo-reasoning, recognize it for the intellectual poverty it represents, and challenge the speaker with a much-needed dose of skepticism.

Binomial Coefficients and Stirling Numbers in C#

As long as I’m on a roll with my posts on number theory in C#, I thought I’d briefly discuss how to generate binomial coefficients, and then move on to Stirling numbers of the second kind, both of which are extremely useful in combinatorics and finite calculus.

Some prerequisites for calculating binomial coefficients include a standard factorial function, nothing special:

long factorial(long n)
{
    if (n == 0) return 1;
    long t = n;
    while(n-- > 2) t *= n;
    return t;
}

Note that I use longs whenever possible because, despite the performance hit from 64-bit operations, it’s worth it to be able to work with numbers that are double the magnitude of ints.

We will also need a function for calculating a falling power of a number, which is defined as: $$x^{\underline{n}} = x(x-1)(x-2)\ldots(x-(n-1))$$You’ll see why in a moment.

long fallingPower(long n, long p)
{
    long t = 1;
    for (long i = 0; i < p; i++) t *= n--;
    return t;
}

Notice that the above function handles the case $$n^{\underline{0}}$$ returning 1. However, it does not handle the case of p > n, which would give an incorrect result, but this is not necessary for our purposes.

Binomial Coefficients

Recall that the definition for the binomial coefficient is $${n \choose k} = \frac{n!}{k!(n-k)!}$$ However, using this exact formula to compute binomial coefficients is a bit naive. If we use falling powers (sometimes called falling factorials), the above formula easily reduces to: $$\frac{n^{\underline{k}}}{k!}$$

We can improve the algorithm a bit more by adding the condition:

$${n \choose k} =
\begin{cases}
\frac{n^{\underline{k}}}{k!} \quad \mbox{if } k \leq \lfloor n/2 \rfloor,\\
\frac{n^{\underline{n-k}}}{(n-k)!} \quad \mbox{if } k > \lfloor n/2 \rfloor.
\end{cases}
$$

Not only is this algorithm faster, but it can also handle larger coefficients than the original formula, since neither the falling power nor the factorial ever gets larger than n/2.
The code for this is straightforward:

long binomialCoeff(long n, long k)
{
    if ((k < 0) || (k > n)) return 0;
    k = (k > n / 2) ? n - k : k;
    return fallingPower(n, k) / factorial(k);
}

However, this is still not as optimal as it can be. The most optimal approach would be to accumulate the falling power while dividing by each factor of the factorial in place. This would minimize the chance of overflow errors, and allow for even larger coefficients to be calculated. The disadvantage of this algorithm is the necessary use of floating-point math:

long binomialCoeff(long n, long k) {
    if ((k < 0) || (k > n)) return 0;
    k = (k > n / 2) ? n - k : k;
    double a = 1;
    for (long i = 1; i <= k; i++) a = (a * (n-k+i)) / i;
    return a + 0.5;
}

Stirling Numbers

Stirling numbers (of the second kind) are useful for, among other things, enumerating the coefficients of the falling-power expansion of a regular power. For example, how would we express x3 in terms of falling powers of x? That is, how do we arrive at an equation of the form $$x^3 = ax^{\underline 3} + bx^{\underline 2} + cx^{\underline 1}$$ Well, we could just solve the equation directly, but this would get unwieldy for higher powers. A neat way of doing this involves the use of Stirling numbers of the second kind, $$\left\{\begin{matrix} n \\ k \end{matrix}\right\}$$ A useful theorem for computing these numbers is

$$ \left\{\begin{matrix} n \\ k \end{matrix}\right\}=\frac{1}{k!} \sum_{i=0}^{k}(-1)^i{k \choose i}(k-i)^n $$$

long stirling(long n, long k)
{
    long sum = 0, neg = 1;
    for (long i = 0; i <= k; i++)
    {
        sum += neg * binomialCoeff(k, i) * pow(k - i, n);
        neg = -neg;
    }
    sum /= factorial(k);
    return sum;
}

With the Stirling numbers in hand, we can now obtain the coefficients for falling power expansions:

$$x^m = \sum_{k=0}^{m}\left\{\begin{matrix} m \\ k \end{matrix}\right\}x^{\underline k}$$

Project Euler — Problem 197

I never thought that solving random math problems can be addictive, but Project Euler does exactly that. Not only does it make you flex your math muscles, it also challenges you to take your programming language of choice to its limits. So it’s a total win-win: you brush up on your math skills, and broaden your programming repertoire at the same time.

Once I discovered Project Euler, I couldn’t pull myself away from the computer until I solved as many problems as I could. As of this writing I’ve solved 187 of their 211 problems.

Problem 197 has to do with finding the nth term of a particular recursively defined sequence: $$u_{n+1} = f(u_n)$$ with $$u_0 = -1, f(x) = \lfloor 2^{30.403243784-x^2}\rfloor \cdot 10^{-9}$$

Of course, as with most Project Euler problems, the value for n is set ridiculously high, presumably to eliminate the possibility of brute-forcing the problem (within the lifetime of the universe).

Fortunately, it takes little more than a superficial examination to see that this problem is actually quite simple in disguise. If we look at the first few terms of the sequence, we can already guess that this sequence appears to be “converging” to a function that oscillates between two values, approximately 0.681 and 1.029 (I won’t give precise numbers, since that would give away the solution).

This means that all we need to do is go far enough into the sequence that the deviation of the oscillations is less than the desired precision asked by the problem (10-9). And it so happens that we don’t need to go out far at all. The sequence actually settles on its two oscillatory values as early as the 1000th term (probably even earlier)! Therefore, the sum of the 1000th and 1001st term will be equivalent to the sum of the 1012th and (1012+1)st term, which is what the problem asks for!

The code to do this is elementary. I accomplished it with a mere 5 lines of C# code. Can you do better?

Elementary Number Theory in C#

I thought I’d post a few code snippets in C# that have to do with basic number theory, since I use them in my programs from time to time. These snippets are by no means optimized, and the use of C# pretty much precludes their use in high-performance applications. Still, for relatively small arguments, these routines run surprisingly fast.

Prime numbers

To generate a list of prime numbers, we use the familiar Sieve of Eratosthenes. We can write one routine to generate the sieve:

bool[] GetPrimeSieve(long upTo)
{
    long sieveSize = upTo + 1;
    bool[] sieve = new bool[sieveSize];
    Array.Clear(sieve, 0, (int)sieveSize);
    sieve[0] = true;
    sieve[1] = true;
    long p, max = (long)Math.Sqrt(sieveSize) + 1;
    for (long i = 2; i <= max; i++)
    {
        if (sieve[i]) continue;
        p = i + i;
        while (p < sieveSize) { sieve[p] = true; p += i; }
    }
    return sieve;
}

The above function returns an array of booleans (the size of the given parameter), each of which is false if the array index is a prime number, or true if it's not a prime number. To get an actual list of prime numbers, we can use a function such as this:

long[] GetPrimesUpTo(long upTo)
{
    if (upTo < 2) return null;
    bool[] sieve = GetPrimeSieve(upTo);
    long[] primes = new long[upTo + 1];

    long index = 0;
    for (long i = 2; i <= upTo; i++) if (!sieve[i]) primes[index++] = i;

    Array.Resize(ref primes, (int)index);
    return primes;
}

The above function returns an actual list of primes less than or equal to the specified high limit. This means that we can easily compute the prime-counting function $$\pi(x)$$ for any integer x by counting the number of elements in the array returned by the function. We can write a similar function to generate a list of composites:

long[] GetCompositesUpTo(long upTo)
{
    if (upTo < 2) return null;
    bool[] sieve = GetPrimeSieve(upTo);
    long[] composites = new long[upTo + 1];

    long index = 0;
    for (long i = 2; i <= upTo; i++)
        if (sieve[i]) composites[index++] = i;

    Array.Resize(ref composites, (int)index);
    return composites;
}

As for determining if a single certain number is prime (without having to generate a giant sieve), we can simply use a function that attempts to factor the number. If the number happens to be divisible by an integer greater than 1 and less than or equal to its square root, then the number is not prime:

bool IsPrime(long n)
{
    long max = (long)Math.Sqrt(n);
    for (long i = 2; i <= max; i++)
        if (n % i == 0)
            return false;
    return true;
}

Greatest Common Divisor and Totient

To obtain the greatest common divisor (GCD) of two numbers, we use the usual Euclidean algorithm:

long gcd(long a, long b)
{
    long temp;
    while (b != 0)
    {
        temp = b;
        b = a % b;
        a = temp;
    }
    return a;
}

There is a slightly different binary algorithm for computing the GCD which is theoretically more efficient, but in practice (at least in C#) it's actually slightly less efficient than the algorithm above:

ulong gcdb(ulong a, ulong b)
{
    int shift;
    if (a == 0 || b == 0) return a | b;

    for (shift = 0; ((a | b) & 1) == 0; ++shift) { a >>= 1; b >>= 1; }
    while ((a & 1) == 0) a >>= 1;

    do {
        while ((b & 1) == 0) b >>= 1;

        if (a < b) {
            b -= a;
        } else {
            ulong temp = a - b;
            a = b;
            b = temp;
        }
        b >>= 1;
    } while (b != 0);
    return a << shift;
}

With the GCD readily available, determining whether two numbers are coprime is just a matter of telling whether or not their GCD is equal to 1. Also, calculating the LCM (least common multiple) of two numbers becomes trivial:

long lcm(long a, long b)
{
    long ret = 0, temp = gcd(a, b);
    if (temp != 0)
    {
        if (b > a) ret = (b / temp) * a;
        else ret = (a / temp) * b;
    }
    return ret;
}

Also using the GCD algorithm, it becomes easy to calculate Euler's totient function for a certain number, since the totient function is simply the number of integers less than or equal to n that are coprime to n:

long eulerTotient(long n)
{
    long sum = 0;
    for (long i = 1; i <= n; i++)
        if (gcd(i, n) == 1) sum++;
    return sum;
}

The above is a really naive algorithm. A much more efficient algorithm (one that is usually given in textbooks) is as follows:

int eulerTotient(int n)
{
    primes = GetPrimesUpTo(n+1);    //this can be precalculated beforehand
    int numPrimes = primes.Length;

    int totient = n;
    int currentNum = n, temp, p, prevP = 0;
    for (int i = 0; i < numPrimes; i++)
    {
        p = (int)primes[i];
        if (p > currentNum) break;
        temp = currentNum / p;
        if (temp * p == currentNum)
        {
            currentNum = temp;
            i--;
            if (prevP != p) { prevP = p; totient -= (totient / p); }
        }
    }
    return totient;
}

Reviving the Veo Observer

Recently I came across an old Veo Observer camera. I remember the Veo cameras as being refreshingly easy to use, and quite inexpensive for all the functionality you get.

This camera seemed to power up normally, and acquired an IP address as expected. However, when I logged on to the camera with a web browser, all it gave was a “404 Not Found” error. Also, when I tried to use the Veo Observer Studio software from the CD that supposedly came with the camera, the software said that there was a “Protocol Version Error.”

This led me to believe that someone may have tried to upgrade the firmware in the camera, and either disconnected before completing the upgrade, or loaded the wrong firmware. So all I had to do was find the correct firmware, as well as the correct utility for loading it onto the camera. This turned out to be a lot more difficult than I thought. The manufacturer (Veo) no longer exists, and all I could find on the Web were complaints from users who are just as SOL as I was. Fortunately, I stumbled on an obscure website that turned out to contain a repository of old device drivers, one of which happened to be the Veo Setup Utility and the Veo firmware. I was then able to load the firmware successfully, and then log on to the camera and see the video stream from it. I’ve decided to host the Veo Setup Utility and the latest firmware here on my website, in case someone else comes across the same problems.

During my search for Veo software, I also found that someone has written a clever Perl module for communicating with the camera (making it usable from virtually any OS), and another person has written Java code for it, too. This inspired me to make a quick-and-dirty C++ application based on the Perl code. My little program controls pretty much all the features of the Veo observer, and displays the image stream from the camera.

Download the program here.