Macintosh PowerBook 100
Restored another vintage laptop! This time, the patient is a Macintosh PowerBook 100, which came from a dear friend of mine who allowed me to restore it after recovering the data from its hard drive. The PowerBook 100 was clearly intended to be a “lower-end” model (even though it still had a price tag of $2,500 when it was launched in 1991), with a very minimal design, cheaper-feeling plastic, small monochrome 640×400 LCD display, and no built-in floppy drive. The upshot is that the inexpensive no-nonsense construction allowed for a fairly easy restoration!
When I attempted to power up the laptop as-is, it just made a few crackling noises through the speaker, and not much else. Otherwise it appeared dead. Time to open it up!
The top and bottom halves of the plastic casing are held together by three screws (!), and once these are removed, the entire thing pops open effortlessly.
Looking closely at the humble motherboard, I see the potential culprit right away: failed capacitors that have leaked and corroded. Hopefully the extent of the corrosion is minimal and didn’t affect any of the chips or other components besides the capacitors themselves. I’m hoping this could be as easy as re-capping the board, i.e. replacing the capacitors.
I proceeded to remove all the capacitors that had the slightest indication of corrosion, that is, any capacitor whose solder joints didn’t look totally pristine and shiny. And after removing each one, I cleaned the surface of any residue with alcohol, and then installed a new capacitor with the same value. In all, I replaced 10 bad caps, all of which were a small surface-mount variety, and were either 10µF/16V or 1µF/50V. My new caps are a bit longer than the old ones, so I oriented them horizontally on the board:
And, after reconnecting the display and keyboard back onto the motherboard, let’s try applying power again:
Hey presto, it’s alive!
A bit more cleaning of dust under the keyboard, removing the gunk from inside the trackball mechanism, and a general wipe-down of the exterior, and we’re ready to reassemble!
And there we have it, a lovingly restored PowerBook 100, with 2 MB of RAM, running System 7.0.1. The only unusual thing about it is the hard drive, which is a whopping 1 GB! This was clearly an upgrade from whatever hard drive it had originally (probably something like 40 MB), which must have been installed many years after it was purchased. This implies that the user of this laptop got quite a lot of mileage out of it, probably well into the late 1990s or even 2000s, which makes me happy.
Finally, to round out this restoration, let’s remove this hard drive and replace it with a CompactFlash card, preloaded with tons of vintage games and apps for the Macintosh.
The hard drive interface on the laptop is technically SCSI, so the original hard drive must have been a SCSI drive. The newer 1GB drive is an IDE drive, and came with an adapter board that fits underneath the drive, which translates between SCSI and IDE. This is quite convenient, since we can now plug in a cheap IDE-to-CF adapter, with a generously large CF card that will become our new hard drive. At last, let the retro gaming commence.
MC-3020-Extra tapes!
Recovered data from several MC-3020-Extra and QIC-3020 tapes. These “Extra” tapes have the same front-facing “interface” as their smaller QIC-3020 cousin, except these are larger length-wise, allowing for larger spools inside the cartridge, and therefore a higher data capacity. Of course these cartridges have the same fatal flaw as all other QIC tapes, which is the flimsy tension belt inside the cartridge that drives the motion of the spools. This belt is virtually guaranteed to fail over a long enough time, and since these “Extra” cartridges have even more moving parts inside, they are even more prone to failure.
This batch of tapes was in particularly rough shape: the tension belt in each tape was broken, and was also adhered to the surface of the tape medium. This was likely because the tapes were stored under excessive heat or humidity, which will cause the belt to break down and react with the tape itself. This required pretty extensive cleaning of all the gunk and pieces of belt that were stuck onto the tape.
Fortunately the tapes had been rewound properly, and the damaged portions of the tape were at a spot that was “beyond” the data area of the tape. After throwing on a fresh tension belt, and using one of my trusty Iomega Ditto drives (compatible with a wide range of this family of cartridges), I was able to dump and decode 100% of the data from them.
(As always, get in touch if you have any kind of vintage tapes or other media that you’d like recovered.)